

The Physics IA

Eugenio Salazar

Agenda

Purpose: Discuss challenges presented by the Physics IA for the May 2020 session (including guiding students and giving feedback) and suggestions on overcoming these.

- An overview of the Internal Assessment (IA)
- Guiding students through the process
 - Working at a distance
 - Guaranteeing probity
 - Giving feedback
- Questions

The Internal Assessment

An overview

The Internal Assessment

Objective:

→ "to demonstrate the application of their skills and knowledge, and to pursue their personal interests" (IB Physics Guide)

Independent investigation:

- → 10 hours: planning + implementation
- → Final product: 6-12 pages (ideally: 10-12 pages)
- May 2020 candidates: main evaluation component

Guiding students

Common problems with the IA and suggestions on how to overcome these

Working at a distance

Establish clear communication channels

- → Dependent on the school model: institutional email, video calls
- → 'Recreate' real-time interactions

Stress the importance of completing this assignment

→ "What was it all for?"

Working at a distance

Greatest challenge: students that have yet to collect data

- 1) Experiments in Kinematics / Mechanics, to be carried out at home
 - Free software such as Tracker can help generate lots of data regarding: velocity, acceleration
 - Downloadable sensors in cellphones
- 2) Use of secondary sources (Databases / simulations)

Working at a distance

Greatest challenge: students that have yet to collect data

- 1) Experiments in Kinematics / Mechanics, to be carried out at home
- 2) Use of secondary sources (Databases / simulations)

PROs:	CONs:		
 allows the student to circumvent limitations on equipment 	• Students often have a harder time defining what is an appropriate 'difficulty level'		
Can eventually produce lots of raw data	• Need to select valid resources (e.g., not overtly simplist simulations, but rather ones which actually enable the		
Might more closely resemble modern physics	student to actively participate, measure, etc)		

Guaranteeing Probity

- Students are **not** more likely to cheat in online courses ... but they **are** more likely to cheat while under stressful conditions
- Moral and professional obligation to ensure academic integrity

Guaranteeing Probity

- Have a frank discussion about integrity policies
 - Refer to school rules + IB indications on probity
- Request regular updates
 - Make sure the end product is the result of your students' work
- If reports look "too good to be true", follow-up with oral interviews
 - Ask students to explain their process / conclusions

Giving feedback - the evaluation criteria

- 1. Personal Engagement
- 2. Exploration
 - \circ Experimental Design
- 3. Analysis
 - Record, process and interpret data
- 4. Evaluation
 - Discussion, limitations and improvements
- 5. Communication

Giving feedback

Real-time feedback

- For students still working on their IAs, try to set up 10-15 min individual interviews
 - Use class time, set students to self-monitored tasks while you talk with them.
 (e.g.- break-out rooms in Zoom)
 - Idea here is to monitor progress, not go over every single detail
 - Remind them that this is an independent investigation, so the end result is up to them don't solve their every problem!
- Set clear due dates and enforce them
 - Important to see intermediate products to guarantee academic honesty
 - Simplify your evaluation process

Giving feedback

- Check a rough draft
 - Read and evaluate one full draft using the IB rubric (use this to inform your feedback)
 - Signal weak areas, but don't give the "correct solution"
 - Look for common errors in rough drafts: scientific vocabulary, processing error/uncertainty, lackluster introductions, simple analysis, shallow conclusions
 - Have students co-evaluate their work
- Have a clear-cut ending to the process

Thanks for coming!

